Теория тепловых насосов (часть 1)

1. ВВЕДЕНИЕ

Хорошее понимание теории поможет оценить ограничения возможностей тепловых насосов, поскольку эти ограничения накладываются не только техническими проблемами, но также и законами природы.

Большая часть этой статьи посвящена теплонасосному циклу с механической компрессией пара, поскольку такие тепловые насосы наиболее распространены. Затем обсуждаются два цикла, куда энергия поступает только в форме тепла: абсорбционный цикл и двойной цикл Ренкина, которые авторам представляются весьма перспективными. Кратко описаны некоторые другие циклы, которые в настоящее время вызывают интерес.

2. ЦИКЛ КАРНО

В 1824 г. Карно впервые использовал термодинамический цикл для описания процесса, и этот цикл остается фундаментальной основой для сравнения с ним и оценки эффективности тепловых насосов.

Тепловой насос можно рассматривать как обращенную тепловую машину. Тепловая машина получает тепло от высокотемпературного источника и сбрасывает его при низкой температуре, отдавая полезную работу. Тепловой насос требует затраты работы для получения тепла при низкой температуре и отдачи его при более высокой .

Можно легко показать, что если обе эти машины обратимы (т. е. термодинамические процессы не содержат потерь тепла или работы), то существует конечный предел эффективности каждой из них, и в обоих случаях это есть отношение Qh/W. Если бы это было не так, то можно было бы построить вечный двигатель, просто соединив одну машину с другой. Это отношение очень важно. В случае тепловой машины оно записывается в виде W/Qh и называется термическим КПД, а для теплового насоса оно остается в виде Qh/W и называется коэффициентом преобразования (КОП). Его следует отличать от аналогичного отношения Ql/W применяемого в холодильной технике и называемого в дальнейшем КОПохл- Поскольку Qh=W+Ql, получается КОПохл- = КОП-1.

Цикл Карно - рабочий процесс идеальной тепловой машины, работающей в заданном интервале температур. Тепло изотермически подводится при температуре Тl и изотермически отводится при температуре Тh- Сжатие и расширение производятся при постоянной энтропии, а работа подводится от внешнего двигателя. Используя определение энтропии и законы термодинамики, можно показать, что коэффициент преобразования для цикла Карно имеет вид

КОП = Тl/(Тн-Tl) + 1 = Тн/(Тн-Tl).

Никакой тепловой насос, созданный в пределах нашей Вселенной, не может иметь лучшей характеристики, и все практические циклы реализуют стремление максимально приблизиться к этому пределу.

3. ЦИКЛ С МЕХАНИЧЕСКОЙ КОМПРЕССИЕЙ ПАРА

С целью приближения к простому циклу Карно, а фактически это значит — с целью создания практически полезного теплового насоса, необходимо стремиться к подводу тепла при условиях, близких к изотермическим. Для этого подбираются рабочие тела, изменяющие агрегатное состояние при необходимых температурах и давлениях. Они поглощают тепло при испарении и отдают при конденсации. Эти процессы образуют изотермы цикла. Сжатие пара, как правило, требует, чтобы пар был сухим, что вызвано особенностями механики большинства компрессоров. Попадание жидкости вместе с паром на вход компрессора может повредить его клапаны, а поступление большого количества жидкости в компрессор может вообще вывести его из строя (если не приняты предохранительные меры, например подпружиненная головка цилиндра).

Цикл с механической компрессией пара и его изображение на Т—5 (температура — энтропия) диаграмме показаны на рис.

Рассмотрим цикл только с сухой компрессией пара и расширением в дроссельном клапане. Этот клапан представляет собой либо регулируемое сопло или отверстие, либо капиллярную трубку. Выбор между ними определяется требованиями в регулировании. Отсутствие расширительной машины в цикле означает, что некоторое количество полезной работы теряется и КОП уменьшается. Как правило, это оправдано тем, что стоимость расшири-тельной машины не окупается полученной па ней работой (По-внднмому, «вечный вопрос» парокомпрессионных холодильных машин и тепловых иасосов об использовании работы расширения будет положительно .решен только при создании крупных тепловых насосов единичной мощностью в десятки мегаватт.). Процесс расширения в сопле необратим, он показан пунктиром па T—S диаграмме (рис.). Обычно он рассматривается как адиабатический, т. е. проходящий без подвода или отвода тепла при расширении рабочего тела.

Теперь продемонстрируем цикл другим способом, с помощью широко применяемой па практике для парокомпрессионных циклов диаграммы давление — удельная энтальпия (р—h), что показано на рис.

3cp_teoria

Этот рисунок следует рассмотреть внимательно. Сжатое рабочее тело под высоким давлением покидает компрессор в точке 1. Поскольку на вход в компрессор поступал только сухой пар и благодаря наклону линий постоянной энтропии, в точке 1 пар перегрет. Прежде чем пар начнет конденсироваться в точке 2, его следует охладить при постоянном давлении. Между точками 2 и 3 происходит конденсация при постоянной температуре (если нет утечек пара). Отсюда видно, что теплообменный аппарат, в котором происходит конденсация (конденсатор), всегда должен быть рассчитан иа прием перегретого пара. Адиабатическое расшире­ние изображается на р—Н диаграмме вертикальной прямой 3—4, и в этом одна из причин удобства такой диаграммы. Для расчета цикла необходимо зиать состояния рабочего тела только на входе в компрессор и выходе из него. Остальное изображается прямыми линиями. Испарение происходит при постоянных давлении и температуре между точками 4 и 5. Следует отметить, что расширение происходит фактически в смеси жидкости и пара. Входящая в испаритель смесь содержит значительную долю пара, иногда до 50% по массе, и эта доля рабочего тела, естественно, уже не участвует в процессе испарения и поглощения тепла. Между точками 5 и 1 происходит изоэнтропийное сжатие сухого пара. На практике его реализовать нельзя, но здесь мы рассматриваем идеализированный цикл. Его эффективность меньше, чем у цикла Карно, из-за необратимости процесса расширения.

Подчеркнем второе важное преимущество р—h диаграммы. Поскольку на горизонтальной оси откладывается энтальпия, она допускает прямой отсчет Qh, QL и W. Простое соотношение Qh = QL + W из диаграммы очевидно. В то же время диаграмма позволяет сразу оценить значение КОП. Для получения высокого КОП значение Qh должно быть велико, а W (работа сжатия) должна быть мала. Пригодность того или иного рабочего тела можно быстро оценить при взгляде на его р—h диаграмму.

Описанный парокомпрессионный цикл одинаков и для теплового насоса и для холодильной машины. Его часто называют обратным циклом Ренкина или, менее точно, просто циклом Ренкина. В действительности цикл Ренкина относится к процессу в паровых турбинах при выработке электроэнергии. На Т—S диаграмме он протекает по часовой стрелке, включая испарение и конденсацию. Подчеркнем два различия между циклом Ренкина и механическим парокомпрессионный. Первое состоит в направлении: цикл Ренкина— это энергетический цикл, отдающий мощность при расширении пара в турбине. Второе различие в том, что в цикле Ренкина сжимается 100% жидкости. Действительно, обратимым по отно­шению к циклу Ренкина был бы цикл с расширительной машиной, а не с необратимым расширением в дросселе. На практике, однако, разница не очень существенна.

 

Мы реализуем теплообменники, компрессоры и прочее холодильное оборудование с 2001 года. 10 лет для компании – возраст, достаточный для того чтобы набраться опыта и иметь силы продолжать развиваться дальше;

Мы не только поддерживаем долгосрочное взаимовыгодное сотрудничество с партнерами за счет отличных условий, но и привлекаем новых поставщиков, предоставляющих нам холодильные машины, воздухоохладители и испарители под реализацию;

Нам доверяют дилерские полномочия производители с мировым именем, известные высочайшим качеством и надежностью холодильного оборудования и сопутствующих систем обслуживания.